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Motivation

• Recent developments in CB balance sheets and sovereign debt sizes

• Fiscal and monetary policy are deeply intertwined

• Conventional (quantity theory) models with

− non-interest bearing money
− a “money multiplier”
− tight relation between P and M

are inadequate for current policy discussions

• The FTPL is a more adequate framework

− this paper tries to bring FTPL down to earth
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First model
Samuelson’s consumption loan model with storage

Simple OLG model with gov’t debt and storage

• Households

max
{cyt ,cot+1,Bt ,st}

log(cyt ) + log(cot+1)

s.t. cyt + st +
Bt

Pt
= ey

cot+1 =
BtR

Pt+1
+ θst , θ ∈ (0, 1)

• Government

Bt+1 = RBt

Bt ≥ 0

can always think of R = 1 and of debt as paper money
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Optimality

cot+1

cyt
= θ if st > 0

cot+1

cyt
= Rt

Pt

Pt+1
if Bt > 0

Let

• Wt := st +
Bt

Pt
denote savings

• ρt be the real rate of return on Wt

The log-utility assumption implies

cot+1

cyt
= ρt ⇒ ρtWt

ey −Wt
= ρt ⇒ Wt = cyt = ey/2
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Equilibrium without storage

Households only save in bonds Wt =
Bt

Pt
= ey/2

From the goods market clearing condition

cyt + cot = ey

ey/2 + ρte
y/2 = ey

which implies ρt = 1, R = Pt+1

Pt
, and cot+1 = cyt = ey/2

The government budget implies that the real value of debt is constant

Bt

Pt
=

Bt−1

Pt−1

and the debt market clearing condition requires it is equal to household savings: Bt

Pt
= ey/2
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Equilibrium without storage

Consumption of the initial old is given by

co1 = R
B0

P1
=

B1

P1
= ey/2

so that

P1 =
2

ey
RB0.

The price level is uniquely determined.
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Equilibrium with storage

By no-arbitrage, θ = ρt = R Pt

Pt+1
(the inflation rate Pt+1

Pt
= R

θ is higher now)

Plugging no-arbitrage into the govt BC

Bt

Pt
= θ

Bt−1

Pt−1

so in the limit Bt

Pt
→ 0 and in turn st → ey/2

In the initial period, storage and real debt are indeterminate. Any

co1 = R
B0

P1
=

B1

P1
< ey/2 ⇔ P1 >

2

ey
RB0

is an equilibrium. The price level is indeterminate.

Note: in any equilibrium with storage, cot = θ/2 < 1/2 for all t, worse than no-storage eqm
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Discussion

Remember that we can always think of paper money if R = 1 and B ≡ M.

In the equilibria with storage, P1 is “too high”

• there is too little real debt available for households to save

• they then use storage, rates of return are low because of no-arbitrage,

• government pays negative interest rates (runs surpluses!), future real debt is even scarcer,
and so on...

Tax Backing. Now, assume that the young pay lump-sum taxes

cyt +Wt + τ = ey

Bt

Pt
= R

Bt−1

Pt
− τ
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Equilibrium with storage and tax backing

Recall that by no-arbitrage ρt = θ < 1, which implies Bt

Pt
= θBt−1

Pt−1

Iterate gBC backwards

Bt

Pt
= θt−1B1

P1
− τ

t−1∑
j=0

θj so that lim
t→∞

Bt

Pt
= − τ

1− θ

so ρt < 1 cannot be an equilibrium: in the limit, gov’t would be net saver, which we are ruling
out (Bt ≥ 0). Intuitively,

• the gov’t surpluses now are independent of the size of debt, so it eventually accumulates
savings ⇒ fiscal policy now incompatible with arbitrary path of prices

• If B ≡ M, the gov’t is shrinking the stock of money by raising taxes

In either case, household wealth eventually not enough to finance taxes. The demand for
savings ↑, P1 ↓.
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Equilibrium without storage and tax backing

Same idea as equilibrium without tax backing, but now youngs have smaller effective
endowment ey − τ

• lower savings Wt =
ey−τ

2

• higher real rate of return ρt =
ey+τ
ey−τ > 1

• less consumption smoothing: cyt = ey−τ
2 , cot+1 =

ey+τ
2

• for the initial old, co1 = RB0

P1
= τ + B1

P1
= τ + ey−τ

2 so that P1 =
2

ey−τ RB0

The government budget is Bt

Pt
= Bt−1

Pt−1
ρ− τ , and real debt is constant. The debt valuation

equation holds: Bt

Pt
= τ

ρ−1
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Taking stock

Without fiscal backing

• 1 eqm without storage, where govt paper is valued as a store of value, and 1 = R Pt

Pt+1

(Wallace (1998): use of money as endogenous outcome rather than assumption)

• ∞ eqa with storage

Govt paper can have value in these models even if it is not backed

With fiscal backing

• equilibria with indeterminate Pt and Bt/Pt → 0 are ruled out

• unique eqm has lower welfare, but arbitrarily close to perfect smoothing as τ → 0, and
ey+τ
ey−τ = R Pt

Pt+1

Note: you have seen case with no storage technology, Bt = M and eo > 0, which also had

• ∞ eqa where money is valued but its value converges to zero (Pt → ∞)

• autarky eqm where money is never valued
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Second model
Debt as fiscal cushion

Well-known optimal fiscal-monetary policy results:

1. With distortionary taxes and state-contingent debt, taxes are smooth and independent of
the debt stock, and debt returns absorb shocks (Lucas and Stokey (1983))

2. Surprise inflation can make non-contingent nominal debt state-contingent in real terms

• but that is only optimal when surprise inflation is costless (Siu (2004), Schmitt-Grohé and
Uribe (2004))

• with long-term debt, state-contingency can be achieved through debt valuation effects
(i.e. future inflation)
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Debt as fiscal cushion

This model

• adds price level determination to Barro (1979)

• shows how nominal debt can be used as a “fiscal cushion” via long-term interest rates
and/or inflation

Govt objective

max
Pt ,Bt ,Rt ,τt

− 1

2
E

[ ∞∑
t=0

βt
(
τ 2t + θ(νt − 1)2

)]
s.t. bt = Rt−1νtbt−1 + gt − τt

RtEt [νt+1] = ρ

with νt = Pt−1/Pt , bt = Bt/Pt and ρ = 1/β
gt is exogenous and random
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Optimality

First-order conditions

τt = λt (taxes)

λt = βRtE[νt+1λt+1] (debt)

µtE[vt+1] = βbtE[νt+1λt+1] (Rt)

θ(νt − 1) + λtRt−1bt−1 = µt−1Rt−1β
−1 (νt)

Combine (Rt) and (debt): µtρ = btλt

Combining FOCs for b,R, ν we get tradeoff for νt

θ(νt − 1) = (τt−1 − τt)Rt−1bt−1

welfare loss at t = budget benefit at (t − 1) (lower Rt−1 via Fisher eq.) − budget cost at t
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With θ = 0

• τt = τt−1 = τ constant

• iterating the govt BC forward we get

bt =
τ

ρ− 1
− Et

∞∑
j=1

βjgt+j

• with gt i.i.d., bt remains constant

• surprise inflation (swings in νt) absorb all effect of gt shocks

With θ = ∞
• νt = 1

• τt = Et [τt+1] (martingale as in Barro (1979))

With 0 < θ < ∞
• mix of surprise inflation and tax changes

• compare 1-period with consol debt model
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Consol Debt

• let At be a consol: never matures, pays 1 dollar every period, has price Qt

• new govt BC

Qt
At − At−1

Pt
=

At−1

Pt
+ gt − τt

• define bt :=
QtAt

Pt
(real value of consol debt)

bt = bt−1νt
1 + Qt

Qt−1
+ gt − τt

• Fisher equation of the private sector

Et
(1 + Qt+1)νt+1

Qt
= ρ
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Optimal response to a spending shock

Numerical example (local approximation around steady-state)
gt i.i.d. with E[gt ] = 1, ρ = 1.1, τ = 2, ν = 1, b = 10

Experiment: one time shock, ↑ gt by 1 unit. Study optimal fiscal/monetary policy responses

Real debt (θ = ∞): permanent increase of τ (0.91) and b (0.09)
Increase in τ perfectly smoothed over time, enough to service higher debt forever

Flexible prices (θ = 0): one-off surprise ↑ π by 10p.p. (≈ small default)
Small one-off reduction in debt service, nothing else changes

Intermediate case (θ = 10):

• One-Year Debt

− permanent fiscal adjustment (b ↑ 0.43, τ ↑ 0.043), one-off monetary ( 1ν ↑ 0.048 p.p.)
− mainly fiscal response, π-default must be immediate so cannot be too large

• Consol Debt

− both adjustments permanent (b ↑ 0.07, τ ↑ 0.007 and 1
ν ↑ 0.74 p.p.)

− mainly monetary response, π-default on bondholders spread out to infinity
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